AI – Removing the Hype from Reality
5/5 (2)
Spread the love
5/5 (2)

You know AI is the absolute next biggest thing. You know it is going to change our world!! It is the little technology trick start-ups use to disrupt industries. It enables crazy applications we have never thought of before! A few days ago, we were dazzled to learn of an AI app that promises to give one a credit rating score based on reading your face – essentially from just a photograph it can tell a prospective financier what the likelihood of your paying back the loan is!

Artificial Intelligence is real and has started becoming mainstream – chatbots using AI to answer queries are everywhere. AI is being used in stock trades, contact centre applications, bank loans processing, crop harvests, self-driving vehicles, and streaming entertainment. It is now part of boardroom discussions and strategic initiatives of CEOs. McKinsey predicts AI will add USD 13 trillion to the global economy by 2030.

Hype vs Reality

So much to like – but why then do we often find leaders shrugging their shoulders? Despite all the good news above there is also another side to AI. For all the green indicators, there are also some red flags (Figure 1). In fact, if one googles “Hype vs reality” the majority of the results returned are to do with AI!!!!

AI - Hype VS Reality

Our experience shows that broad swaths of executives are skeptical of AI. Leaders in a variety of businesses from large multinational banks, consumer packaged goods companies to appliance makers have privately expressed their disappointment at not being able to make AI work for them. They cannot bridge the gap between the AI hype and reality in their businesses.

The data available also bears this out – VentureBeat estimates that 87% of ML projects never make it into production. Ecosystm research suggests that only 7% of organisations have an AI centre of excellence (CoE) – while the remaining depend on ad-hoc implementations. There are several challenges that organisations face in procuring and implementing a successful AI solution – both technology and business (Figure 2).

AI implementation challenges

AI trends for 2021

Visible Patterns Emerge from Successful AI Use Cases

This brings us to an interesting dichotomy – the reality of failed implementations versus the hype surrounding AI. Digital native companies or early adopters of AI form most of the success stories. Traditional companies find it tougher to embark on a successful AI journey. There have been studies that show a staggering gap in the ROI of AI projects between early adopters versus others, and the gulf between the high performers and the rest when using AI.

If we look back to figure 2 and analyse the challenges, we will see certain common themes – many of which are now commonplace wisdom, if not trite. Leadership alignment around AI strategy is the most common one. Getting clean data, aligning strategy with execution, and building the capabilities to use AI are all touted as critical requirements for successful execution. These themes all point to the insight that it is the human element that is more critical – not the technology.

As practitioners we have come across numerous examples of AI projects which go off-track because of human issues. Let’s take the example of an organisation that had enhancing call centre capabilities and capacity using RPA tools, as a key business mandate. There was strong leadership support and enthusiasm. It was clear that a large number of basic level tickets raised by the centre could be resolved using digital agents. This would result in substantial gains in customer experience, through faster ticket resolution and higher employee productivity – it was estimated to be above 30%. However, after two months of launching the pilot only a very small percentage of cases were identified for migration to digital agents.

Very soon, it became clear that these tools were being perceived as a replacement for human skills, rather than to augment their capabilities. The most vocal proponent of the initiative – the head of the customer experience team – became its critic, as he felt that the small savings were not worth the risk of higher agent turnover rates due to perceived job insecurity.

This was turned around by a three-day workshop focused on demonstrating how the job responsibility of agents could be enhanced as portions of their job got automated. The processes were redesigned to isolate parts which could be fully automated and to club non-automated components together driving more responsibility and discretion for agents. Once enhanced responsibility of the call centre staff was identified, managers felt more comfortable and were willing to support the initiative. In the end, the goals set at the start of the project were all met.

In my next blog I will share with you what we consider the winning formula for a successful AI deployment. In the meantime, share with us your AI stories – both of your challenges and successes.

Written with contributions from Ravi Pattamatta and Ratnesh Prasad


AI Research and Reports

0

Please rate this

Niloy brings deep expertise in the digital and technology industry with over 25 years experience, spanning McKinsey, Dell, HP, Compaq and the Tata Group. He has covered complex engagements across functional areas in the Commercial space – Sales, Go-To-Market, Business Development, Media, Product Marketing, Pricing, Field Marketing, Business Planning, Operations, Strategy & Planning, Digital Operations. He has led engagements to build Go-To-Market strategies and specialised in Product Management – designing the appropriate portfolio and Pricing. He has delivered strategies to balance growth and market share growth while still delivering on profitability. Niloy was the Vice President responsible for the Client Solutions product line across APJ at Dell and also the Head of Strategy for APJ for End User Computing, managing a large team and has also led a global organisation as the Worldwide Client Solutions Pricing Director. He has collaborated extensively with the C-suite to enable clients across the Digital Value Chain. Niloy is a graduate of the Indian Institute of Management, Ahmedabad. Prior to that he studied Mechanical Engineering from the University of Pune.


Similar Blogs

Join the community and receive insights and analysis directly to your inbox.

Connect with an Expert
5 1 vote
Article Rating
Subscribe
Notify of
guest
0 Comments
Inline Feedbacks
View all comments